Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(2): 688-703, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38243899

RESUMO

Persistent pain is a significant healthcare problem with limited treatment options. The high incidence of comorbid chronic pain and depression significantly reduces life quality and complicates the treatment of both conditions. Antidepressants are less effective for pain and depression than for depression alone and they induce severe side effects. Opioids are highly efficacious analgesics, but rapid development of tolerance, dependence, and debilitating side effects limit their efficacy and safe use. Leucine-enkephalin (Leu-ENK), the endogenous delta opioid receptor agonist, controls pain and mood and produces potent analgesia with reduced adverse effects compared to conventional opioids. High proteolytic instability, however, makes Leu-ENK ineffective after systemic administration and limits its clinical usefulness. KK-103, a Leu-ENK prodrug, was developed to overcome these limitations of Leu-ENK via markedly increased plasma stability in mice. We showed rapid and substantially increased systemic adsorption and blood plasma exposure of KK-103 compared to Leu-ENK. We also observed brain uptake of radiolabeled KK-103 after systemic administration, indicating a central effect of KK-103. We then established KK-103's prolonged antinociceptive efficacy in the ramped hot plate and formalin test. In both models, KK-103 produced a comparable dose to the maximum antinociceptive-effect relationship. The pain-alleviating effect of KK-103 primarily resulted from activating the delta opioid receptor after the likely conversion of KK-103 to Leu-ENK in vivo. Finally, KK-103 produced an antidepressant-like activity comparable to the antidepressant desipramine, but with minimal gastrointestinal inhibition and no incidence of sedation.


Assuntos
Encefalina Leucina , Pró-Fármacos , Camundongos , Animais , Receptores Opioides delta/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
2.
Synapse ; 71(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28233334

RESUMO

Interest in a role for norepinephrine (NE) in substance use disorders has increased over recent years. In particular, its interaction with dopamine (DA) is of importance. In this study, positron emission tomography (PET) was used to explore the impact of prazosin (an alpha 1 NE antagonist) on DA levels. Healthy volunteers were administered prazosin for approximately 4 weeks at the daily dose of 15 mg to reach steady state. Participants were scanned with PET imaging and the [11 C]-(+)-PHNO tracer at baseline (before prazosin), at steady state, and after a wash out period. Prazosin administration was associated with an increase of [11 C]-(+)-PHNO binding potential in the dorsal caudate relative to baseline, which corresponds to a decrease in DA levels. This study is the first to demonstrate interactions between DA and NE in healthy humans.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , Prazosina/farmacologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxazinas , Projetos Piloto , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores Adrenérgicos alfa 1/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...